Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity.

Identifieur interne : 000B51 ( Main/Exploration ); précédent : 000B50; suivant : 000B52

Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity.

Auteurs : Chhana Ullah [Allemagne] ; Sybille B. Unsicker [Allemagne] ; Michael Reichelt [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Almuth Hammerbacher [Afrique du Sud]

Source :

RBID : pubmed:31803202

Abstract

Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (Populus spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (P. nigra) stems after infection by a newly described fungal stem pathogen, Plectosphaerella populi, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in P. populi-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating de novo biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of P. populi, suggesting that these metabolites act as anti-pathogen defenses in poplar in vivo. Among the hormones, salicylic acid (SA) was higher in P. populi-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in P. populi-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during P. populi infection of poplar stems.

DOI: 10.3389/fpls.2019.01441
PubMed: 31803202
PubMed Central: PMC6873352


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by
<i>Plectosphaerella populi</i>
: Hormonal Regulation, Biosynthesis and Antifungal Activity.</title>
<author>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31803202</idno>
<idno type="pmid">31803202</idno>
<idno type="doi">10.3389/fpls.2019.01441</idno>
<idno type="pmc">PMC6873352</idno>
<idno type="wicri:Area/Main/Corpus">000575</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000575</idno>
<idno type="wicri:Area/Main/Curation">000575</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000575</idno>
<idno type="wicri:Area/Main/Exploration">000575</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by
<i>Plectosphaerella populi</i>
: Hormonal Regulation, Biosynthesis and Antifungal Activity.</title>
<author>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena</wicri:regionArea>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (
<i>Populus</i>
spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (
<i>P. nigra</i>
) stems after infection by a newly described fungal stem pathogen,
<i>Plectosphaerella populi</i>
, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in
<i>P. populi</i>
-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (
<i>LAR</i>
) and anthocyanidin reductase (
<i>ANR</i>
) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating
<i>de novo</i>
biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of
<i>P. populi</i>
, suggesting that these metabolites act as anti-pathogen defenses in poplar
<i>in vivo</i>
. Among the hormones, salicylic acid (SA) was higher in
<i>P. populi</i>
-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in
<i>P. populi</i>
-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during
<i>P. populi</i>
infection of poplar stems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31803202</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by
<i>Plectosphaerella populi</i>
: Hormonal Regulation, Biosynthesis and Antifungal Activity.</ArticleTitle>
<Pagination>
<MedlinePgn>1441</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01441</ELocationID>
<Abstract>
<AbstractText>Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (
<i>Populus</i>
spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (
<i>P. nigra</i>
) stems after infection by a newly described fungal stem pathogen,
<i>Plectosphaerella populi</i>
, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in
<i>P. populi</i>
-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (
<i>LAR</i>
) and anthocyanidin reductase (
<i>ANR</i>
) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating
<i>de novo</i>
biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of
<i>P. populi</i>
, suggesting that these metabolites act as anti-pathogen defenses in poplar
<i>in vivo</i>
. Among the hormones, salicylic acid (SA) was higher in
<i>P. populi</i>
-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in
<i>P. populi</i>
-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during
<i>P. populi</i>
infection of poplar stems.</AbstractText>
<CopyrightInformation>Copyright © 2019 Ullah, Unsicker, Reichelt, Gershenzon and Hammerbacher.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ullah</LastName>
<ForeName>Chhana</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammerbacher</LastName>
<ForeName>Almuth</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">chemical defense</Keyword>
<Keyword MajorTopicYN="N">cytokinin</Keyword>
<Keyword MajorTopicYN="N">flavonoids</Keyword>
<Keyword MajorTopicYN="N">phytohormones</Keyword>
<Keyword MajorTopicYN="N">salicylic acid</Keyword>
<Keyword MajorTopicYN="N">secondary metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31803202</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01441</ArticleId>
<ArticleId IdType="pmc">PMC6873352</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jul;16(7):388-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1977 Jun;11(2):263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">890735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(1):351-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28444797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Aug;68(15):2043-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Aug;19(8):481-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24794463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2714-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2017 Dec 01;10(1):plx067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29354257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 13;7:652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jul;159(3):1159-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):815-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Feb;40(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Dec;43(11-12):1097-1108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29129016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):652-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jul;112(1):41-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 10;88(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23288883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 19;4:451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24312105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Aug 17;19(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 5;315(5808):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1984 Mar;10(3):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):480-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Oct;28(20):1637-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16955359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2002 Oct;19(5):517-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Mar;26(3):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23234404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Dec;175(4):1560-1578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Feb 1;422(1):91-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14725861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2015 Jun;34:167-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):2107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Aug;25(8):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22746825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Apr;63(7):2513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):20032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Feb 25;10:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30858861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):504-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):693-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25624398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2671-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1431-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Nov 19;6(302):ra100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24255177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Aug;66(16):4873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Nov 08;11:154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22067529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jan;221(2):960-975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30168132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jan;89(1):15-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27557345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011 May 20;7(1):13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21595992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 22;278(34):31647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Aug;44:82-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29555490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31803202
   |texte=   Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31803202" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020